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The behaviour of a modified autocatalator model:
P+C—>A+C, rate=k,pc,
A+2B— 3B, rate = k, ab?,
B-C, rate = k, b,
C—-D, rate = kyc,

is studied in a batch system with the ‘pool chemical approximation’ applied to the
precursor P (i.e. we assume p = p, = constant for all time). Only for the special case
ko py = ks, for which there is a reduction to a two variable system, are ‘classical’
nonlinear dynamical responses exhibited, with multiple stationary states, Hopf
bifurcation to stable or unstable limit cycles and extinction of oscillations via
homoclinic orbit formation. Under limiting parameter values, the locus of homoclinic
bifurcations can be obtained analytically. For the general cases of kyp, < k; and
kypy > ks, the system is contracting or expanding respectively. For the contracting
case, there may be an initial period of sustained but strictly transient bistability or
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oscillation, and a clear three-time period emerges, before the reaction dies out
completely, with b and ¢ tending to zero. For the expanding case, the reaction either
dies out as above or follows a continuous growth in intermediate species
concentrations and overall reaction rate. The behaviour in these general cases can be
readily understood in great detail from a consideration of the stationary state and
dynamic bifurcation structure for the reduced case.

1. Introduction

There is much interest in chemical wave propagation in systems that exhibit
sustained oscillations under well-stirred conditions. The two variable autocatalator
has been used successfully to model oscillatory behaviour in isothermal closed
systems (Merkin et al. 1986, 1987a, b; Gray & Scott 1986). The basic scheme, as
originally considered, assumes that some precursor P, which is in plentiful supply
reacts slowly to produce an intermediate A. This species is converted to a second
intermediate B via an overall process that is autocatalytic in B. Finally, the
autocatalyst B undergoes a decay reaction, producing a final, stable product C. This
scheme has subsequently been elaborated to include a direct, uncatalysed conversion
of A to B, various additional autocatalytic channels and the direct conversion of A
to C (Gray et al. 1988, 1989). The chemical viability and motivation for this prototype
reaction scheme has been discussed fully in the recent review article by Gray (1988).

Merkin & Needham (1989) analysed the behaviour associated with this model but
in that case the additional complication of the direct conversion of A to B ahead of
the wave leads to an accelerating front. More recently, the basic scheme has been
extended to include the effects of a second feedback. Scott & Tomlin (1990)
introduced the idea of a thermal feedback mechanism based on a temperature-
sensitive initiation process and an exothermic ‘termination’ step B-—>C. This
introduces a sequence of secondary bifurcations from the original oscillatory
response, leading to complex behaviour and to chemical chaos. An alternative,
chemical feedback arrangement retaining the isothermal character of the original
scheme has also been studied (Peng et al. 1990; Scott et al. 1991). There, the
previously inert product C now plays a chemical role, with an additional channel
from the original reactant P to species A being catalysed by C, and there is also a
decay from C to the new, final product D. Again, this extended scheme supports
period-doubling cascades to chaotic solutions.

Here, we consider this modified version of the C-feedback autocatalator of Peng
et al. We assume that the step from precursor P to intermediate A proceeds only
through the catalysed channel. Thus, the scheme considered is

P+C—->A+C, rate=k,pc, (la)
A+2B 3B, rate = k, ab?, (10)
B-C, rate = k, b, (1¢)
C-D, rate = k¢, (1d)

If the concentrations of the intermediate species B and C ahead of the wave are
initially zero, the system there is ‘frozen’, with zero reaction rate, until seeded by the
diffusion of intermediates from the front. This is a consequence of neglecting the
uncatalysed reactions: the inclusion of these steps provides a ‘cold boundary

Phil. Trans. R. Soc. Lond. A (1992)
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problem’ similar to that encountered in non-isothermal flame studies; the major
effect being to introduce a finite time 7 beyond which classical steady wave analysis
cannot be applied. Autocatalytic schemes have previously been applied for models of
flame studies precisely to overcome this problem

We apply the ‘pool chemical approximation’ to the precursor P, assuming its
(large) concentration remains constant at the initial value p, throughout. The
governing reaction—diffusion equations for the three intermediate species then
become

0a/ot’ =D, Via+k,p,c—k, ab?, (2a)
0b/ot = D Vb +k, ab®—k,b, (2b)
Oc/ot" = Do Vic+k,b—kyc. (2¢)
The boundary conditions and initial conditions of particular interest will be
a=a, b={b°g(7,)’|7/| <, c=0att' =0,7 >0, 2d)
0, || > 1,
Oa/0r =0b/or" =0c/or’ =0 for =0 and 7 oo for allt. (2e)

Equations (2) are made dimensionless, following Merkin et al. (1987a,b), by
introducing the scalings

r = (k1/k2)%aa Y= (kl/k2)%b’ 2= (k1/k2)%0’ t=kyt

We also assume equal diffusion coefficients and scale the length with r = #/(k,/D)?, to
give

0x /0t = Vi + pz—ay?, (3a)
/ot = Viy+ay:—y, (3b)
0z/0t = V%24 y—ryz, (3¢)
subject to ) <o
— _ [ Yog(r), ) _ —
x = x, y—{o, > o z=0 (¢t=0,r>0), (3d)
Ox/0r = 0y/or =0z/or =0 (t>0;r=0 and 7r-—>00), (3e)

where the dimensionless parameters x4 and y are given by

w= (ko po)/ky and vy =ky/k,,

with 4 > 0 and y > 0, y, = (k,/k,)#,, o = l(k,/D)? and the initial input function ¢(r)
1s positive and continuous on || < o with a maximum value of unity. The assumption
of equal diffusion coefficients is realistic for the situations of interest when all
chemical species have comparable molecular size. However, there are cases for
example in the biochemical context where this is not the case and the diffusion
coefficients can differ by many order of magnitude. This case has been examined in
detail for a related chemical model by Billingham & Needham (1991a, b).

2. Well-stirred model

In all our previous studies of reaction—diffusion phenomena, experience has shown
that a necessary prerequisite for efficient progress is the understanding of the
behaviour of the corresponding ‘well-stirred’ ordinary differential equation (ODE)

Phil. Trans. R. Soc. Lond. A (1992)
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system. Consequently, we begin here by examining the model in a continuously
stirred, (but closed) rector, where equations (3) reduce to

dax/dt = puz—axy?, (4a)
dy/dt = xy®—y, (4b)
dz/dt = y—1y=. (4¢)

On adding equation (4a—c), we obtain
de/dt +dy/dt+dz/dt = (u—7) 2. (5)

This leads to three distinct cases:
(@) >y, the ‘expanding’ case;
(b) w <7y, the ‘contracting’ case;
() p=7, the ‘reduced’ case.
The terminology expanding or contracting refers to the total concentration of the
intermediate species x+y+2z which increases or decreases with time respectively.
Considering the reduced case further, equation (5) becomes

da/dt+ dy/dt+dz/dt = 0,

which, on integration, gives
x+y+2z =, (6)

where the positive constant c, represents the total initial concentration of the
intermediate species A, B and C. Then, writing z = ¢,—(z+y), equation (4a—c)
reduces to the two-variable, two-parameter set

da/dt = p(cy—x—y)—xy?, (Ta)
dy/dt = zy®*—y. (70)

We start by considering this reduced, two dimensional system (7) in some detail.
Here, we find the possibility of multiple stationary states and of Hopf bifurcations,
giving rise to both stable and unstable limit cycles. This oscillatory behaviour is
found to break up via homoclinic orbit formation, the curve of which in parameter
space arises from a double zero eigenvalue (DzE) point (Gray & Roberts 1988).

A detailed understanding of the reduced case then enables us to gain a clearer
insight into the behaviour of the general (expanding and contracting) cases. We
analyse these, both for when |¢—1/| is small and when |g—1v|is of O(1). In the former
case, regions of oscillatory behaviour can be identified : oscillatory evolution develops
spontaneously, but exists only for finite time periods. In the latter case, periods of
oscillatory behaviour can be initiated only for the contracting system and then only
in the limiting case when ¢, is large and with # and y both small, of O(c,™!). In all
cases, none of the complex dynamical behaviour reported by Peng et al. (1990) is
observed.

3. The reduced case, x =y

(a) Stationary states and local stability analysis

Here we consider the two-parameter system given by equation (7a, b). These have
a ‘no reaction’ stationary state solution corresponding to each reaction rate term
becoming zero with
Tes = Coy Yss =0 (8a)
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1. The dependence of the stationary-state concentration x,, on the parameter u for the

reduced case with ¢, = 4 showing three branches: the solution z = ¢, exists for all 4, whereas the

two solutions given by equation (10) exist for u > 4/(c2—4) = 1.

for all parameter values. The stability of this solution is determined from the
characteristic equation and governed by the eigenvalues A given by

A+ (p+1)A+pu =0, (8b)

giving A = —u, —1. These are both real and negative for all acceptable x4 and hence
this stationary state is always a stable node.

There are two further stationary states given by x, ¥, = 1, from equation (75), with
then

(w4 1)y — peo Yos + 1 = 0, 9)
giving
= (1/2p) {pecg—[pPcE—dpu(u+ D]}, yss = [1/2(n+ 1) {peo + [pPcd — dp(u+ 1)1,
(100)
= (1/2p) {peo+ [P —dp(u+ DI} yss = [1/2(0+ 1) {peo— [p2cE —dpu(u+ 1)1,
(10b)
provided ¢ > 4(u+1)/p. From this, we require u > 4/(c2—4) and hence a necessary

condition for the existence of this pair of stationary states 1s ¢y > 2. A graph of the
stationary states z. as a funection of u for ¢, = 4 is shown in ﬁgure 1. Note that from
(10a) xss—>2{co~[co 413} > 0 and from (10b) g, > e+ [c2— 4]} < ¢, as p—>00.
The eigenvalues for stationary states (IOa) and (10b) are given by the usual
characteristic equation
A2—TrA+D =0, (11)

where Tr=1—pu—y2 and D= (u+1)y’,—p are the trace and determinant
respectively of the jacobian matrix evaluated at the stationary states. Using
equation (9), we have D = pu(c,y,—2) and hence for stationary state (10a), where
Yss > MCo/2(n+1), then D > u[uci —4(u+1)]/2(p+1) > 0, from the condition for the
existence of these ‘non-zero’ states.

For stationary state (10b), we find

= [1/2(p+ 1)) 123 — dpu(u+ 1)]{[ e} — dpo(pe + 1) i~ pco} < 0.

Thus, it follows that stationary state (105) is a saddle point for all x> 4/(ci—4). The
two stationary states (10a) and (10b) merge at a saddle-node blfurcatlon with
u=4/(ci—4) or, equivalently, ¢ = 4(u+1)/u.

Stationary state (10a) has D >0 for x> 4/(c;—4), so its stability will be

Phil. Trans. R. Soc. Lond. A (1992)
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‘u |
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0.3+

0 6 12 013 6 9

Coy Cy
Figure 2. Loci of bifurcation points in the ¢,—u parameter plane: (a) saddle-node points (solid
curve) and Hopf points (lower branch of broken curve) emerging from a double zero eigenvalue
point —the Hopf bifurcation changes from subcritical to supercritical at the point + ; (b) detail of
Hopf locus and curve of homoclinic orbits, showing apparent crossing.

determined by the trace. In particular, there will be a point of Hopf bifurcation for
Tr = 0 (subject to certain other qualifications). The condition 7% = 0 is satisfied with

pr—1=0, (12a)

which, together with equation (9), gives a parametric representation of the Hopf
curve. Substituting for y, we obtain

co = (14p—p*)/ul1—pl. (120)

Substituting the condition ¢; = 4(x+ 1)/x into equation (12b), gives the condition for
a double zero eigenvalue (i.e. at 7r = D =0s0 A = 0,0), at

p=YV5-1), ¢=1+v5. (12¢)

Thus it follows that Hopf bifurcation points lie on the locus described by equation
(12b) for u < §(+/5—1) (=~ 0.618) and ¢, > 1++/5(~ 3.2361).

(b) Stability of emerging limit cycle and degenerate bifurcation points

The stability of the limit cycle emerging from the Hopf bifurcation was determined
using the numerical package BIFOR2 (Hassard et al. 1980). This converged rapidly
as the exact Hopf point is known from above and a systematic search with decreasing
4 could readily be undertaken. A degenerate Hopf bifurcation point was located
at u = pu* =0.3027, ¢, =cf =4.7912. For u > u* (¢, <c¥) the Hopf bifurcation
described by equation (12b) is subcritical, giving rise to an unstable limit cycle,
whilst for u < u*(c, > c¢ff) the bifurcation is supercritical and a stable limit cycle
emerges.

The emerging limit cycles were followed numerically using essentially the same
shooting method described by Forbes (1990 ; Forbes & Holmes 1990). This method
has the added advantage of allowing the stability of the limit cycle to be determined
by the calculation of the corresponding Floquet multipliers. The limit cycles were
followed with increasing amplitude until their extinction at a homoclinic orbit
arising from the saddle-node point. The homoclinic orbit was located using the
method described in Kaas-Petersen & Scott (1988) and its locus in the parameter
plane locus was similarly determined by repeating the calculations for a variety of ¢,.

These various bifurcation loci are indicated in figure 2a, b. Figure 2a shows the
saddle-node curve specified by D = 0, 4 = 4/(c2—4) and the Hopf bifurcation locus

Phal. Trans. R. Soc. Lond. A (1992)
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Figure 3. The development of oscillatory amplitude with the parameter u: (a) ¢, = 4.00208, an
unstable limit cycle emerges at u* = 0.4 and grows for increasing u, terminating at a homoclinic
bifurcation; (b) ¢, = 5.05750, a stable limit cycle emerges at u* = 0.28 and grows at first as p
decreases: the turning point in the locus corresponds to a loss of stability for the limit cycle, and
the unstable cycle grows as pu increases again, terminating in a homoclinic orbit for u > u*; (c)
¢, = 9.82145, a stable limit cycle emerges at u* = 0.12 and grows as u decreases: the turning point
before the homoclinic orbit formation, at u < u*, is not visible on this scale.

(broken curve) given by equation (12b). This latter meets the saddle-node curve at
the DzE point given by (12¢). It is the lower branch of this curve that corresponds
to Hopf bifurcation points (these lie on the lowest branch of stationary states in
figure 1). The degenerate Hopf bifurcation point is also marked on this curve. The
upper branch of the 77 = 0 curve corresponds to this condition being satisfied for a
stationary state lying on the intermediate, saddle branch in figure 1. This portion of
the curve does not correspond to any bifurcation in the system, but its position
relative to the locus of homoclinic orbits is of some relevance. Figure 2b shows on an
expanded scale the detail of the relative positions of the Hopf bifurcation and
homoclinic orbit loci. Both emerge from the pzrE point (12c¢). Initially, the
homoclinic orbit curve lies above the Hopf locus (i.e. the unstable limit cycle that
emerge from the Hopf point grow as u increases and forms its homoclinic orbit at
some larger p). This station is shown in figure 3a for the representative case
¢y = 4.00208: the Hopf bifurcation occurs at u4 = 0.4.

The homoclinic curve remains above the Hopf locus as we pass through the
degenerate Hopf point (u*,cd). For larger ¢, (lower u), the Hopf bifurcation now
yields a stable limit cycle that grows as p decreases from the Hopf point. The
homoclinic orbit, however, is still formed at some px greater than the Hopf point.
There must, therefore, be a turning point in the limit cycle locus at some point, as
indicated in figure 36 for the case ¢, = 5.057 50, for which the Hopf bifurcation occurs
at u = 0.28. As the limit cycle passes round the turning point, it changes stability,
becoming unstable. Thus, for values of u between this turning point and the Hopf
point the system has two limit cycle solutions around the (unstable) lowest
stationary state. The smaller cycle (that with lowest amplitude) is stable, but this is
surrounded by an unstable limit cycle. The unstable cycle grows in amplitude as p
increases, as before, and terminates in its homoclinic orbit.

At yet larger values for the total intermediate initial concentration, c,, the Hopf
and homoclinic curves appear to cross. Thus, the homoclinic orbit occurs at lower
values of u than the Hopf point. Such a situation is shown in figure 3¢ for
¢, = 9.82145. A stable limit cycle emerges at 4 = 0.12 and grows as u decreases. There
is, in fact, a change in stability of the limit cycle at the highest amplitude, just before

Phil. Trans. R. Soc. Lond. A (1992)
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2-

0 1 2 3
Figure 4. Example limit cycles for p = 0.27974, ¢, = 5.05799.

homoclinic orbit formation, although this is not easily seen from the scale of the
figure. Figure 4 shows a representative pair of coexisting limit cycle for 4 = 0.2797
and ¢, = 5.05799: the unstable limit cycle surrounds the smaller, stable cycle.

(c) Asymptotic analysis for large c,
The behaviour of the homoclinic orbit curve for large ¢, (and small u) can be

determined if we consider the initial-value problem given by equation (7, b) subject
to

z(0) =0, y(0)= Co» b= pCy Co> 1, (13)

where £ is of O(1). To start the solution we note that there is an initial region where
t is of O(1) and where « is of O(c;?) and y is of O(c,). This suggests putting

r=c?X, y=¢,Y. (14a)
Equations (7) then become
FL—Y)=XY?—(5/c3) X = (1/¢}) dX/dt, (14b)
dY/dt+Y = (1/c,) XY?, (14¢)
subject to the initial conditions
X(0)=0, Y(0)=1. (14d)
Equation (14c¢) suggests looking for a solution in the form of an expansion
X(t;c9) = Xo(t) + e Xy () +...,  Y(t;¢0) = Yo(t) +cg* Vi) + ... (15)

Substituting (15) into equation (14b, c¢) and equating terms of like power in ¢,, we
obtain after a little manipulation

Yo=e™, Xy = ge'(e'—1), (16a)
Y =p(l—e"'—te™), X, =—p%e*2e'—1)(1—tet—e™), (16b)

These forms show that expansion (15) becomes non-uniform when ¢ is of O(In c,), with
then z and y both being of O(1).

Phil. Trans. R. Soc. Lond. A (1992)
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To continue the solution, we put ¢ = In (¢,/f) + ¢ and leave x and y unscaled. Then,
with u = jicy*, the equation satisfied by « and y are, at leading order

de/df = g—axy?, (17a)
dy/df = xy*—y, (17b)
with, from equation (16),
2f 923t B
x~%——/ez—+..., y~pgelt+p+... as f>—o (17¢)

Now, equation (17a, b) are those of the original autocatalator model (Merkin et al.
1986), from which it follows that they possess one (finite) stationary state (77, ).
This is stable for gz > 1, with a Hopf bifurcation at 7 =1 leading to a stable
limit cycle that grows for 7 < 1. The oscillatory behaviour breaks down at
E=j,~0.90032 through the formation of a heteroclinic orbit from points at
infinity. For & < &,, the solution becomes unbounded, with x ~ g, y -0 as {—>o0.
This implies that for 7 > 1, to leading order, x— g™, y— @& as {—>00. which is the
asymptotic form of stationary state (10a) in this limit. For &, < & < 1, the solution
approaches a stable limit cycle as f>oc0. For & < fi,, the solution becomes unbounded
on this timescale and a further, outer region is required in which ¢ is of O(c,). To
complete this case we then put

x=c,X, f=¢cy7 (18a)
and, with y exponentially small, we then obtain
dX/dr = p(1—X), with X~pgr+...,7<1, (18b)

which has the solution
X=(1—e"). (18¢)

So that, finally, with & < 77, * becomes large with
x—>cy, y—>0. (18d)

The above analysis shows that for ¢, > 1, the Hopf bifurcation and homoclinic orbit
loci should become parallel for ¢, large, being given by c;'+... and g, cy'+...
respectively.

This behaviour can be seen in figure 2b and from figure 3¢ in which the
development of the amplitude with u closely resembles that given in Merkin et al.
(1986). The values of the Hopf bifurcation and the homoclinic point are in reasonable
agreement with the above forms even for this value of ¢, (the error is ca. 0.02 in each
case, with u ~ 0.1).

As a check on the above theory for ¢, > 1, we integrated equations (7) numerically
taking ¢, = 50 with representative values of y, namely 4 = 0.06 (Z = 3.0), # = 0.019
(# = 0.95) and g = 0.012 (& = 0.6). The results are shown in figure 5. With u = 0.06,
figure 5a, we see that (z, y) rapidly approaches the stationary state (Z ', ) as required.
For 4 = 0.019 there is a sustained oscillatory response, figure 5b, in both x and y and
with x = 0.012, figure 5¢, the asymptotic values (18d) are approached, with y -0
rapidly and z— ¢, over a much longer timescale.

The detailed information obtained above for this reduced case, 4 = 7y, provides a
framework against which to discuss the general case u # y. We start this discussion
by considering the case |p—7y| < 1 first.

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 5. The behaviour for the reduced case with large initial concentration of autocatalyst
(¢y = 50) showing the Hopf and homoclinic bifurcation structure as x varies: (a) u = 0.06 (& > 1),
showing approach to stable ‘non-zero’ state; (b) # = 0.019 (%, < & < 1) showing stable oscillatory
response; (¢) 4 = 0.012 (7 < &z,) showing asymptotic approach to ‘zero reaction’ state.

4. General case, |¢—7y| small

Equation (5) suggests that to interpret the full scheme it is appropriate to use a
change of variables, from (x,y,z2) to (x,y, §), where £ = z+y+2. Equations (4) then
become

da/dt = p(E—x—y)—ay?, (19a)
dy/dt = xy®*—y, (19b)
dg/dt = e(f—x—y), (19¢)

where € = y—y.
To integrate equations (19) we also need to specify the initial conditions. A
property of such autocatalytic schemes is that reaction does not begin spontaneously

Phil. Trans. R. Soc. Lond. A (1992)
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if no autocatalyst is present initially. If, however, some B is added to the initial P,
species C will be produced via step (1¢) and this then can catalyse the production of
A via step (1a). To be explicit, then, we assume initial conditions of the form such
that only intermediate B is present (in addition to the precursor), i.e. we take

2(0) =0, y(0)=co £(0)=c¢, (20)

so the initial concentration c, can be identified with the constant of integration used
previously in the reduced case.

(@) The contracting case, p <y

The contracting case, with 4 < 7y, corresponds to ¢ < 0 in equation (19¢). We start
our analysis by assuming || € 1. Equations (19) were integrated numerically subject
to initial conditions (20) using a standard Runge-Kutta method, for a range of values
of u and ¢,. The values of these parameters were chosen so as to investigate the
behaviour for this case in direct comparison with that in the different regions of the
u—c, plane of the reduced case, figure 2a, b.

(i) Computed examples

The parameter set u = 0.50, ¢, = 3.0 and ¢ = —0.01 corresponds to conditions
below the saddle-node curve in figure 2a for the reduced case, so that only the ‘no
reaction’ stationary state (8a) exists for that system. The evolution of the present
system is shown in figure 6a, and shows a rapid approach to this same stationary
state.

With 4 = 0.80, ¢, = 6.0 the reduced system shows multistability but lies well above
the Hopf bifurcation and homoclinic orbit curves in figure 2b. With, again,
e = —0.01, the resulting evolution of the contracting case, figure 65, shows a definite
three time-region structure before the final stationary-state is attained.

Finally, we took s = 0.12 and ¢, = 10.0. This corresponds to the region just above
the Hopf bifurcation curve and with u < u*(c, > cf) so that the reduced system has
a stable limit cycle co-existing with the ‘no reaction’ state. To distinguish fully the
structure of the solution in this case, it proved necessary to employ a value of ¢
smaller than that used in the previous cases. We took ¢ = —0.001 and the resulting
evolution is shown in figure 6¢c. Here, we can see the rapid onset of oscillatory
behaviour, first decreasing in amplitude but then increasing before an abrupt change
towards the final stationary state is reached. This structure is brought out even more
spectacularly in figure 6d, for which a value of the ‘decay’ parameter ¢ = —0.0001
was taken. In this case, the oscillatory behaviour dies away to almost zero amplitude
for 100 <t < 350 before increasing again. There is again a three time-region
structure to the solution.

(ii) Asymptotic development
To complete this discussion and to attempt to understand more clearly the nature
of the results shown in figure 6, we obtain a solution of equations (19) subject to
initial conditions (20) for |¢|] < 1. To do this we put § = —e¢, where 0 <d <1 and
expand
x(t; p, 0) = xo(t) + S (t) + ...,
Y(t; 1, 0) = yo(t) + 0y, () + .., (21)
g(t B ,u" 6) = go(t) + 8£1(t) + ERES]
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 6. The behaviour for the ‘contracting case’, ¢ < 0: (a) p = 0.5, ¢, = 3.0, ¢ = —0.01, showing
simple evolution to ‘no reaction’ state (y —0); (b) u = 0.8, ¢, = 6.0, ¢ = —0.01 showing approach to
quasi-steady non-zero state before rapid transition to vicinity of final concentrations; (¢) 4 = 0.12,
¢y =10.0, ¢=-—0.001 showing approach to quasi-steady oscillatory solution followed by
‘homoclinicity * and approach to final, steady concentrations; (d) as for (c) but with ¢ = —0.0001
showing closer approach to quasi-steady, focal state and Hopf bifurcation structure.

and leave ¢ unscaled. At leading order, we obtain
dgy/dt =0, so £, =c¢, (22)

with then x, and y, satisfying the reduced two-variable scheme, given by equations
(7) and discussed in the previous section.

Now (x,,¥,) will approach a stable attractor for ¢ large, which allows three
possibilities: (x,,y,) may approach stationary state 8(a), stationary state (10a)
(either directly as a stable node or via damped oscillations if this is a stable focus) or
the limit cycle. The values of ¢, and x determine which of these options is realized.

Phil. Trans. R. Soc. Lond. A (1992)
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(iii) Approach to ‘zero reaction’ state (8a)

For u <4/(ci—4), state (8a) is the only stable attractor available and so is
approached as ¢ >o0. With u > 4/(ci —4), stationary states (10a, b) also exist and the
initial conditions start the solution in the basin of attraction of state (10a), if this is
stable, or of the stable limit cycle surrounding this, if this state is unstable. Thus the
system moves towards this as t >co. If, however, state (10a) is stable but surrounded
by an unstable limit cycle, our initial conditions typically lie outside the basin of
attraction of this solution and so again tend to the stable state (8a).

At O(8) we obtain the equations

da,/dt = — (u+yg) o, — (+ 220 yo) Y1 + 1€, (23a)
dy,/dt = (2% yy— 1)y, +y5 %1, (23b)
d§,/dt = =&, +x,+y,. (23¢)

The main interest from equations (23) is the behaviour of the solution for large {. We
take the case when (,, y,) approaches the ‘no reaction’ state (8a) first. Consideration
of the above equations shows then that

X, —>¢y, Y,—~>0, & —>c; as t—>© (24 a)

or some constant ¢,. In this case, the expansion (21) remains uniform for all ¢ (and
this is confirmed by the consideration of higher order terms), with then

x—>c,+0(8), y—=>0, £->cy+0(9) (240)
as {—>00. This behaviour can be seen clearly in figure 6a.

(iv) Approach to stable nodal state (10a)

Next, consider the case when (z,,y,) approaches stationary state (10a) mono-
tonically (stable node). Equation (23) now reveal that

gl ~ (Tgst Yss— Co) EF Co,

Mt Yss— o) o s T Yss—Co) (25)
p— (1) Yl o p—(p+ 1)y

1

where x and y,, are given by equation (10a). Note that

TaF Yaa = = —[1/2ups+ 1) {pucy + [%c3 — 4+ D]} < 0,

Equations (25) show that, in this case, expansion (21) becomes non-uniform on a
timescale of O(0™!) with x,y and £ all of O(1). A further time region is now required
in which 7 = 8t is of O(1). Substituting this new time into equations (19) and leaving
x,y and § unscaled, we obtain at leading order

mE—x—y)—ay* =0, (26a)
ay?—y =0, (26b)
dg/dr = x+y—§, (26¢)

with, from matching to the previous time region,
X~ X+ OT), Y~ys+0(T), E=co+0(1) as 7->0. (264d)
Phil. Trans. R. Soc. Lond. A (1992)
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The solution of equation (26, b) which matches with (26d) and is consistent with
(10a) is

@ = {pE—[pPE —4pu(1 + )3/ 21, (27a)
= {PE+ 28 —dp(1+p) 3/ 2(u+ 1), (270)

with, then, equation (26¢) becoming
dg/dr = — [1/2p(p+ )] {p&+ 26— 4u(1 + ) 1} (27¢)

Equation (27¢) has the solution, given implicitly by,
[&/8(pe+ 1)1 {pu — 1282 — (L + )} — [co/ 8+ 1)] {prey — [ 1PcE — 4pu(1 + p) 1}

282 —4p(1+ p)Jf
neo+[pPeg—4p(1+p) ) 2(p+1)
Now equation (28a) becomes singular as £ ->2[(x+1)/u]* and
¢
oo = 2k 1) [ o e~ a1+ 1)
2,2 1
1l {/wo+[/t ¢~ 41+ )] }} (285)
2plpt 1)}
with then, from equation (27a, b),
e[+ 1)/pl, y—>(u/ (w+ 1)) (28¢)
A final time region is then required in which
t=71,0"14+1 (29a)
and in which z,y and £ are unscaled. The resulting equations, at leading order, are
dg/dt =0, &=2[u+1)/ul (290)
and then da/dt = p2[(u+ 1)/ pfi—x—1y} —xy?, (29¢)
dy/dt = xy®*—y. (294d)

Consideration of the O(d) terms in the solutions for the previous time region shows
these to be of O((1,—7)7!) as 7—>7,. This, in turn, leads to the initial conditions for
x and y via (28c¢) as

) 2~ [(n+ 1)/ pF+0E?), gy~ [n/(u+1)F+0F) (29¢)
as t{—>—00.

Equatlons (29¢, d) have two stationary states (2[(x+1)/x]%,0) and ([(u+1)/u]:,
[#/(s+ 1)]) and it is straightforward to show that the former of these is a stable node
for all values of u. However, the initial conditions (29¢) start the solution close to the
second of these stationary states whose stability we must therefore determine. For
this, we need the centre manifold theorem (Verhulst 1990) as the linearized version
of this equation has a zero eigenvalue, A, =0, with the associated eigenvector
e, = (1, —u/(14+u))*. The second eigenvalue A, = (1—,u 13/ (p+1) with the
corresponding eigenvector e, = (1, —1/(u+2))T For n<3(+v/5—1), A, >0 and this
stationary state is unstable. However for u>4+/5—1), A, <0 and further
considerations are required.

Phil. Trans. R. Soc. Lond. A (1992)
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The discussion above shows that for x> }(1/5—1), there is a unique one-
dimensional invariant stable manifold which is locally tangent to e,, together with
a one-dimensional centre manifold locally tangent to e;. An application of Carr’s
theorem then shows that all phase paths in the neighbourhood of ([(x+ 1)/,
[/ (1 +1)]7) contract rapidly onto this centre manifold. To determine the local form
of this centre manifold, we have first to transform the variables from (z,y) to (%, ),
where

=[(p+1)/uli+z, y=I[p/(p+1]+7
X=z+@p+2)y, Y=[p/(pt+D]T+7.

This puts the equations into the appropriate form for calculating the centre
manifold, which we find, after a little calculation, to be given by

with then

Y= [/ (4 p— 1) [/ (4 1) X3+ O(X°). (30a)
The dynamics on the centre manifold are then given by
AX/df = [—Bp(p+1)2/ (2 +p—1)2 [/ (p+ DX+ O(XP). (30b)

This then shows that the solution paths approach the stationary state on the centre
manifold (30a) in X > 0, whilst they leave it in X < 0. This, together with the stable
mamfold tangentlal to e2 gives a saddle-node appearance to the statlonary state

([(u+1)/ult, [#/(e+1)]?). From this, it follows that this state is unstable to
perturbations of the form given by the initial conditions (29¢), with the solution to
equation (29c¢, d) then having

x—>2[(u+1)/ul}, y—>0 as t—>o0 (31)

on the timescale with ¢ of O(1).

This is the situation for the results shown in figure 6. The three distinct timescales
can be seen clearly. There is an initial adjustment on an O(1) timescale to the values
given by equations (26d) and (27a b), followed by a slower change on an O(5™?)
timescale to 7 = 7, as given by equation (285), with a final region in which the final
forms given by equation (31) are rapidly attained.

(v) Approach to stable focal state (10a) or to stable limit cycle

Next, we consider the case when the solution in the.initial time region approaches
either the stationary state (10a) through a damped oscillatory response (if it is
stable) or the stable limit cycle if the stationary state is unstable. Here it is more
appropriate to use a two-timescale analysis, with a fast time ¢ and a slow time 7 = 8¢.
This leads to the equations

Ox/0t+ 0 0x /01 = w(E—x—y)—ay?, (32a)
Jy/0t+ 80y /0T = xy?—vy, (32b)
0f/0t+80E/0r = —d0(E—x—y). (32¢)

We now expand
x=x,+0x,+..., Y=y, +0y,+..., &=4§&+,. (33)

At leading order, we have
0¢,/0t =0, (34a)
which has the solution

Phil. Trans. B. Soc. Lond. A (1992)
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with equation (32a, b) then giving
0, /Ot = pu[Ao(T) ~ 2o —Yo] — %, Yo, (35a)
Yo/ 0t = Yo=Yy (350)

At O(8) we obtain
0f,/0t+04,/0r = —Ay+ (xy+y,), £.(0)=0. (36a)

Equation (36a) leads to secular terms at this order and, hence, would render
expansion (33) non-uniform unless 4,(7) satisfies the equation

d4,/d7+4,=0, (36d)
which has the solution
Ay =cye™. (36¢)

We are now in a position to interpret the solution in this case. Equation (36¢) shows
that A, decreases slowly, on an O(07') timescale, which is equivalent to quasi-
statically reducing the effective value of ¢, in the reduced case and hence moving (in
figure 2a) from a region of stable focal behaviour by crossing the Hopf bifurcation
curve (which in this case gives rise to the birth of a stable limit cycle). Thus there is
an initial period in which the quasi-steady stationary rates are attained through a
damped oscillatory response (these have a frequency on the ¢ timescale of O(1)). Thus
for ¢ sufficiently large with 7 of O(1)

T ~ {pdo— [RAE—4p(p+ 1)/ 20, yo ~ {(ndo+ [P A3 —4u(u+ V)] /2(n+1).  (37)

The system undergoes an effective Hopf bifurcation at 7 = 7, where, from equation
(12b)
A(r) = A, = (L p—p®) /(1 — )t < . (38)
For 7 > 7,, the solution follows essentially the same behaviour as that described in
Merkin et al. (1986). The quasi-steady stationary state (37) becomes unstable and
there is a region of oscillation about this solution, with growing amplitude and
period, before the final break-up via an effective homoclinic orbit bifurcation, with
finally, to leading order
x—~>A, y—0 (39)

On a timescale for ¢ of 7,4+ 0(1). When we start in the parameter range where the
initial attractor is already the stable limit cycle, the situation is similar, except that
now the period of decaying oscillations is absent and we proceed directly to the
homoclinic orbit bifurcation with, again, equation (39) giving the final asymptotic
behaviour.

The situation in this case can clearly be seen in figure 6¢, d. Here 4, = 9.82145 and,
as predicted by equation (39), this is the final value of z. The initial region of damped
oscillation followed by a quasi-static evolution are seen followed by the final region
of growing oscillations.

5. The expanding case, u < y:u—y <1

The expanding case arises when x > 7y, corresponding to ¢ > 0 in equations (19).
We start by considering the solution for ¢ < 1. This analysis follows closely that
given in the previous section for € < 0. There is typically an initial time region in
which ¢ is of O(1) and during which we expand %, ¥ and £ in a power series in ¢. At
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Figure 7. The behaviour for the ‘expanding case’, ¢ > 0: (a) 4 = 0.5, ¢, = 3.0, ¢ = 0.01, showing
rapid evolution to ‘no reaction’ state (y—>0); (b) 4 = 0.8, ¢, = 6.0, ¢ = 0.01, system moves onto
‘non-zero reaction’ branch with « decreasing and y increasing quasi-statically; (c) x = 0.12,
¢, = 10.0, ¢ = 0.001, showing an initial damped oscillatory motion onto the quasi-steady ‘non-zero
reaction’ branch.

leading order we still find £, = ¢, with x and y still governed by equations (7) of the
reduced system, with the three asymptotic limits as ¢ —oo still being possible. Again,
if 4 < 4/(ci—4), the expansion in this region remains uniform with the large time
behaviour given by equation (24b). This can be seen in the time series in figure 7a for
the system with the same parameter values of that in figure 6a except than now
€>0.

With x4 > 4/(ci—4), the stable stationary state (10a) can be approached, with
again the O(e) terms rendering the expansion non-uniform on a timescale of O(¢™?).
A further time region of O(¢™?) is required and with 7 = ¢t, the equation satisfied by
£ is, to leading order, now

dg/dr = [1/2p(p+ 1){p + [ —4p(1+w) ], £0) =¢, (40)

(this is essentially equation (26¢) with a sign change). Equation (40) can be solved
directly, to yield a solution similar to that given by equation (28a). However, the
important difference here is that £ now grows with 7, with

£~ et 2y o~ WD 2 1), @~ 2(ut 1) e WD (41)

as 7—>00. It is straightforward to show that this is a solution of the original system
(19), to leading order, and no further time regions are required in this case. Equation
(41) shows that £ and y become unbounded and x decreases to zero on an O(e™?)
timescale. This form of behaviour can be seen in figure 7b for u = 0.8, ¢, = 6.0 and
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¢ = 0.01 (the same parameter values, except for the sign change in ¢ as used in figure
6b). This shows that z and y evolve rapidly to the values given by equation (27a, b),
while on a much longer timescale y increases and x decreases to zero.

The discussion of the case in which the initial behaviour is a damped oscillatory
approach towards the ‘non-zero’ state (10a) also follows that given in the previous
section. Now, the equation satisfied by 4,(7) is

dd,/dr = 4, (42a)
with solution A, =cq€, (420)
and with z, and Y, given by equation (37) for 7 sufficiently large. Thus in this case

v~ [(pt1)/cople™, y~[ep/(p+1)]e (42¢)

for 7 large. This behaviour can be seen in figure 7c¢. There, an initial period of damped
oscillation is followed by a slow decay of x and a slow increase in y (on an O(¢™%)
timescale). .

This completes the discussion of the case when [y—vy| < 1. We now go on to
consider the general case when | — 7| is not necessarily small, in both the contracting
and expanding scenarios. We start by examining the solution when ¢, the initial
input of the autocatalyst B, is large.

6. The general case

The behaviour of any given system, with an arbitrary choice of parameter values,
can be determined numerically, but even with 4 and 7y not of similar magnitude some
analytical progress can be made, provided the initial autocatalyst concentration c,
is large. Here, we examine two cases, namely (a) x, v of O(1) and (b) u,y both of
O(cy ). The latter case is suggested by the earlier result for the reduced case that with
¢, > 1, the Hopf bifurcation arising for u ~ c;*.

(@) General case with u,y of O(1)

With the parameters x and y of order unity, there is an initial region with duration
of O(1) in which B "

x=c %, y=c,7, £=cyé, (43)

where 7, 7 and £ are of O(1). Substituting these scalings into equations (19), with ¢
unscaled, gives

WE—y)—ay* = cy*(dx/dt+ ux), (44a)
zy*—y = dy/dt, (44b)
e(E—i)—dE/dt = cy%x, (44c)
with initial conditions (20) becoming
#0)=0, 70)=1, £0)=1, (44.d)

where, as before, ¢ = 4 —1v, but is now not necessarily small.
Equations (44) suggest an expansion of the form

=T+ C T+ ..., T=To+C F+..., E=E+c?E+.... (45)
At leading order
Ty Yo = ﬂ(“g—o_go) (46a)
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 8. The behaviour for the general expanding case: y =1, y = 0.5 (¢ = 0.5), ¢, = 20.

and using this in equation (44b), we obtain
dgo/dt = p&y— (pe+1) 7o, (460)
d§,/dt = e, — €7, (46¢)
(i) Expanding case, € > 0

First we consider the expanding case, for which ¢ > 0. The solution of equation (46)
satisfying the initial conditions (44d) is

& = (A=A, eM%)/(A,—A,), (47a)
Yo = [Ay(e=Ay) Ml = A (6—A,) eh] /e(A,— Ay), (47b)
T, = pet(Ay—A,) (eMt—eMh) [[Ay(e—Ay) eMP = A (e—Ay) ]2, (47¢)

where *

Aip = He—(ut1) F [(u+1—e)*+4el},
with € > A, > 0 > A,.

A consideration of the higher order terms in equation (45) suggests that the
expansion remains uniform with the asymptotic behaviour given by equation (47).
From this we note that £ and y both remain of O(c,) throughout and both become
large for ¢ large, with

cy€ e’ Co(—A,) (6—Ay) es?
[t 1—cP+aef 77 (ut 1 —e)+4e]

£~ (48a)
as t—>o00. There is a difference between these two forms in that £ increases
monotonically, whereas y has a minimum at ¢t = (A,—A,) ' In[(e—A,)/(6—A,)] before
finally increasing. From equation (47¢), « remains small — of O(c;*) — throughout,

approaching zero as .
pel(u+1—e)+4elf _ ,
x ~ e

Af(e—A,)?

as t>o0. Note that these forms agree with equation (41) when ¢ < 1.

The behaviour described above can be seen in figure 8, for a system with p =1,
v=0.5 (so € =0.5) and ¢, = 20. The minimum in y is seen, with the large time
behaviour of both z and y as given by equation (48a, b).

(48b)

(ii) Contracting case, € < 0

Next, we consider the contracting case, with ¢ < 0. For this, we take § = y—u > 0,
with now & not necessarily small. The solution for the leading order term is still given
by equation (47), with e replaced by —d, though now A, < A, < 0. The behaviour as
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t—oo is given by equation (48), but now we should expect that £,—0, y,—~0 and
x,—+00. Thus, expansion (45) becomes non-uniform and to determine the timescale
over which this develops, we need to consider terms of O(cy?) in expansion (45). This
gives for 7, and &, on using equation (44a)

dg,/dt = pé, — (p+1) g, — Az /dt — p,, (49a)
dg,/dt = 0(7, — &, +7%,). (49b)

Equations (49) possess a complementary function of the form given by equation (47),
which will die away as ¢t 00, and a particular integral (via the term in x,) which has

PO Ay —A,) (Ag +pe— Ay) €74

&~ (84 Ag)2 (6 — Ay 6 — pudy— Ay +A2) (49¢)

as t—>oo0. This shows that expansion (45) becomes non-uniform when ¢ is of
O(—2A3'1In (cy)) with then x, y and § all of O(1).

To continue, we put ¢t = —A;'In (¢,)+¢ and leave z, y and £ unscaled. This leaves
equation (19) unaltered (except that ¢ is replaced by #) with

~ #O*(A—Ay)

—AE —3A,f
o, g0 © o )

~ “/\1(/\24‘3)

el 4 O(e 1), 50
Sag—ag O 0

~ —4A Ao f -2t
3 (/12—/\1)6 24+ 0(e™27)
as {—>00 (note that A, < 0).

A consideration of equation (19) with § = —e > 0 shows that y -0 whilst x and £
approach the same constant value as { —>c0. This final value is not determinable from
the above analysis and requires a solution of the full problem.

This behaviour can be seen from the results shown in figure 9, taking y = 1,y = 1.5
(so 6 =0.5) and ¢, = 20. This shows that y tends to zero monotonically, while a
double structure in the behaviour of z is seen, with x finally approaching a non-zero
constant value.

(b) General case with p, v of O(cy")

Next, we consider the case when x and y are both of O(c,*) for ¢, > 1. Here we put
u = jicy', € = écg' (or 8 = dc;') where &, € (or 0) are of O(1). An initial region is now
required in which

x=1c?X, y=c¢Y, £=¢,¢ (61)
and t is left unscaled. Equations (19) become
co?dX/dt = @(§—Y)—XY?—cy® uX, (52a)
dY/dt = =Y+t XT3, (52b)
d¢/dt = cyte({—Y)—cyteX (62¢)

subject to initial conditions

X(0)=0, Y0)=1, ¢0)=1. (52d)
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 9. The behaviour for the general contracting case: y =1, y = 1.5 (§ = 0.5), ¢, = 20.

An expansion in powers of ¢! is suggested by equation (52) with, at leading order,
X, = e¥(l—e), Y =e, & =1. (53a)

This shows that X, grows with ¢ and a consideration of the terms of O(c;?) is required.
These give

X, =e®{pet—e~'—1)—pg*[1+2e'(1—e7")] (1 —te“t—e"‘)},}
(530)

Y,=p(l—tet—e™), { =¢lt+et—1).

Thus the expansion breaks down when ¢ is of O(In¢,) with then x and y both of O(1).
This suggests putting

t=1In(co)+t E=c,¢ (54)
and leaving x and y unscaled. Substituting these forms into equation (19), an
expansion in inverse powers of ¢, is suggested. This in turn leads to { = 1 +&fcy* + ...,
which becomes non-uniform on an O(c,) timescale. To discuss the solution further in
this region, we use a two-timescale analysis, with # and 7 = ¢5'7 as the fast and slow
time variables respectively, and looking for a solution by expanding in inverse
powers of ¢,.
The equation for £, the leading term in the expansion for {, is

g/t =0, &1 as I—->—o0, (55a)
giving & = By(1), By(0) =1, (55b)

for some, as yet undetermined, function B(r). The equations for x, and y, (the
leading terms in the expansions for x and y respectively) are then

da,/dt = @B,(T) — %, s, (85¢)
dyo/dt = 2o y5—Y, (55d)
subject to, from equation (53),
xy~ e —2m2 e+ ..., y,~p+.. as [—>o0.

At O(cy"), we have, using equation (55b),
dg,/dt = eB,—dB,/dr, {,(0) = 0. ’ (56a)

To remove the secular terms arising at this stage and to render the expansion
uniform for times of O(c,), we must have, from equation (56a)

B,(1) = & (560)
Phil. Trans. R. Soc. Lond. A (1992)
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816i) 41161

X concentration
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y concentration
[\S}

0 50 100 0 25 50
time time
Figure 10. The behaviour for the general contracting case with x and y of O(cy?): u = 0.075,
v =0.1, ¢, = 20.

With this form for By(7) and € < 0, equation (55¢, d) become the same as those
considered in some detail by Merkin et al. (1986). Hence, for the contracting case
starting (say) with a value of &z > 1, it follows from that earlier study that there is
a region where the solution follows the quasi-steady state

xy =g e y,=jge” (where § = —& > 0). (57)

this is followed by the onset of a region of oscillatory behaviour of increasing
amplitude and period, arising from the equivalent of a Hopf bifurcation at
7= 6'1n (). This period of oscillatory behaviour ends, through the infinite period
bifurcation at time ¢, = (c,/d)In (&/f,) where, as before, fi, = 0.90032. After this,
y— 0 exponentially quickly and, with ¢, = {—¢t,, & ~ ¢, and § ~ ¢, @i,/ on at, of O(1)
timescale. To complete the solution we put ¥ = 0 and

x=cyX, E=c I, 71,=cy't,, (68a)

with equations (19) then reducing to
dX/dr, = g(F —X), dF/dr, =—0(F —X), (58b)
X~up,7y, F~p, /g for 7,<1. (58¢)

Equation (58a-—c) have the solution

X = [/ i+ 0)] [1 —exp (= (B+0) 7)), F = [fg,/(ii+0)][1+0/fexp (= (fi+3),)].
60a)
From (60a) it follows that finally « and § tend to the same limit, namely

@, &> fig o/ (i+9). (600)

This behaviour is illustrated in figure 10 for the system with g = 0.075 (& = 1.5),
¢y =20 and € = —0.025 (J = 0.5).

For the expanding case, € > 0, the solution of equation (55¢, d) becomes stable as
T increases, with ultimately

x~g e y~peT as T->00. (61)

If we start with u < 1, a region of oscillatory behaviour will be seen before the final
quasi-steady state evolution is attained. This behaviour is seen in the results shown
in figure 11, taking u = 0.0475 (& = 0.95), ¢, = 20 and ¢ = 0.025. There is an initial

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 11. The behaviour for the general expanding case with x and y of O(c;!): u = 0.0475,
v = 0.0225, ¢, = 20.

period of oscillatory behaviour (since u starts in the interval fi, < & < 1) which is
followed, after a time of O(¢7'In ) by monotonic evolution following the above
asymptotic forms.

7. Discussion

In the previous sections we have examined in some detail the evolution of a model
based on the product-feedback autocatalator scheme of Peng et al. (1989). The main
difference between the original and the form used here is that two ‘uncatalysed’
reactions (the direct production of A from P and the direct conversion of A and B)
that compete with the catalysed steps (1a) and (14) have been omitted. There are
some significant consequences of this reduction. Now, only in the special case that
u =, or in dimensional terms k, p, = k;, does the system have a recognizable
structure of non-trivial stationary state and limit cycle behaviour (under the usual
‘pool chemical approximation’). The equality of the two pseudo-first-order rate
coefficients means that a molecule C is equally likely to participate in the initiation
process (1a), and thus provide more active intermediate species, or to decay to the
stable product D via the ‘termination’ process (1d). Under these somewhat
restrictive conditions, the system then provides a classic example of multistability
and Hopf bifurcation phenomena, with extinction of oscillations occurring through
homoclinic orbit bifurcations arising from a double zero eigenvalue degeneracy. The
Hopf bifurcation shows a second degeneracy, with the stability of the merging limit
cycle changing from unstable to stable at an H3, point (Gray & Roberts 1988).

For the more general case, in which k,p, and k,; are not exactly equal, this
stationary state structure collapses. For the ‘contracting’ case, with k,p, < k, the
termination process wins out, on average, so the concentrations of the two catalytic
intermediates B and C decrease in time, tending to a final state with [B] = [C] =0
(but a non-zero, steady final concentration of intermediate A). For the ‘expanding’
case, with k,p, > k;, a molecule of C is more likely to react via the initiation channel
than in the termination step. The future course is then determined by the
competition between steps (1b) and (1¢). The overall reaction may still ‘die out’,
with [B] and [C] tending to zero and [A] tending to a non-zero constant given by the
initial concentration of the intermediates. However, for other parameter values, a
growing solution can be attained, with [B] and [C] becoming unbounded (in the ‘pool
chemical approximation’) and [A] tending (slowly) to zero.

Phil. Trans. R. Soc. Lond. A (1992)
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Despite the rather special nature of the ‘reduced’ case, with x4 exactly equal to vy,
the understanding developed there in §3 proved to be extremely valuable in
providing a framework for both general cases. The evolving concentrations could
clearly be seen to follow the same stationary state and limit cycle structure quasi-
steadily. The analysis based on this information allowed the final intermediate
concentrations to be determined asymptotically.

The unbounded growth for the ‘expanding’ case is the most severely modified part
of the behaviour when the pool chemical approximation is relaxed (i.e. when the
consumption of the precursor species P is admitted). This decay is governed by the
equation

d[P]/dt = —k, pc.

In the dimensionless terms used above, this can be rewritten as

dp/dt = —npuz,

where 7 = k,/(k, k,):. For the pool chemical approximation to apply, we require
7 < 1, so the right hand side of this equation remains small for a sufficiently long
period. In such cases, the decay of P simply adds a slow decrease in the effective value
for 4 to the decay in ¢, described earlier, and enhances slightly the departure from
the (quasi-steady) stationary state (10a) or the stable limit cycle surrounding it. In
the ‘expanding’ case, the unbounded growth will be curtailed and the system tends
back to [B] = [C] = 0 at the very longest times.

Strictly, the model studied here is structurally unstable to the re-introduction of
the two steps discussed above. The particular choice of the model has been guided by
longer term interests connected with chemical wave propagation, as described
earlier. It is, however, interesting to consider the differences between the present
scheme and its ‘full’ form (Peng et al. 1990; Scott et al. 1991). The latter, crucially
contains the step P— A, with rate =k, p, (say). The system then exhibited Hopf
bifurcation, period doubling and chaos. In terms of the dimensionless equations this
is equivalent to modifying equation (4a) to

da/dt = v+ puz— xy?, (62)

where v = (k, 16 po/k}) with equation (4b, ¢) unaltered. The system given by (40, c)
and (62) has the single stationary state

Tg = (Y—W)/VV, Yss = 71}/(7_1“)’ 2 = V/(Y— 1) (63)

provided y > u; for the ‘expanding case’, y < p, the system has no finite stationary
state.

The unique stationary state (63) can lose local stability (for acceptable parameter
values) at points of Hopf bifurcation given by

Yy + 1 =y (L+2y =y —p) (y— )2 —(y—1) (y—p)* = 0, (64)

with y > u. Note that equation (64) reduces to v =1 when =0 (Merkin et al.
1987b). The emerging limit cycle from this primary bifurcation may then undergo
secondary bifurcations, giving the complex dynamical behaviour reported by Peng
et al. (1990). In our case, however, the only stationary state for y > y is yg = 25, = 0
with 2y being some positive constant and this state is a stable node for all parameter
values (although some transient oscillatory development is possible). In the special
case y = u, other stationary state solutions and Hopf bifurcations are possible, but
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this has reduced the model to two independent variables, so again secondary
bifurcations and the ensuing more complex responses are not allowed. We are
grateful to a referee for showing that bounded chaotic behaviour is not possible in
this system, the proof of which is given in the Appendix.

Finally, it is interesting to recognize that the original autocatalator scheme also
emerges naturally from our model, in the limit of large c,; both for the reduced
scheme and, perhaps more significantly, for the general case when |¢— | is not small
(see §6). A large value of ¢, corresponds to a large initial input of the autocatalyst B,
with the concentrations of A and C remaining small, at least initially. With the
concentration of C low, the final termination step (1d) is relatively weak and the
scheme reduces to that discussed previously (Merkin et al. 1986, 1987 a, b) with the
difference that the initiation step is now catalysed by the ‘product’ C. With low
initial concentrations of C, this latter point effectively provides a slowly varying
value for the parameter y, evolving quasi-statically with the solution.

We are grateful to an anonymous referee for the proof in the Appendix, and to SERC (SMC) and
NATO (SKS, grant no. 0124/89) for financial support.

Appendix

Result. The solution of the initial-value problem consisting of equation (4a—c) subject to
2(0) = 0, y(0) = ¢, > 0 2(0) = 0 cannot approach a bounded chaotic attractor as t—o0,

for any p,y > 0.

Proof. Let x = x,(t), y = y,(t), 2 = 2,(t) be the solution to the initial-value problem
in t> 0. The quadrant z,y,z > 0 is readily shown to be invariant for equation
(4a—c), and so, z,(t), y,(t), z,(t) = 0 for all £ > 0. Hence

20, u>vy,

M%@+%W+%WMﬂ=W—W%m{<0 p<y

for all £ > 0. Thus g > y(u < ) z,(t) + y,(t) +2,(t) is monotone increasing (decreasing)
with . Now suppose that the solution approaches a bounded chaotic attractor as
t—>00. Then certainly all of z,(¢), y,(¢), 2,(t) are bounded above and below as t -o0, and
it follows that so is (x,() +y,(t) +2,(£)). Therefore, for u > y(p < y) (%, (t) + y,(t) +2,(t))
is monotone increasing (decreasing) and bounded above (below), and so there is a
positive constant ¢, such that (in both cases), (x,(t)+y,(t)+2,(t) ~>c,, as t—>c0.
Hence the asymptotic dynamics of the initial-value problem as ¢ -c0 takes place on
the two-dimensional manifold x+y+z =c,, and are therefore governed by the
autonomous two dimensional system,

da/dt = ple,—x—yl—ay?, dy/dt=ay®—y,

which leads to a contradiction as this system cannot have a chaotic attractor. The
result follows. (|
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